Neural Predictive Control for Wide Range of Process Systems
نویسندگان
چکیده
In this paper a Neural Predictive Controller (NPC) designed to control a broad class of process systems. Neural network identification yields nonlinear global model of the unknown system. LevenbergMarquardt (L-M) optimization method is used to find optimal control signal to minimize future errors of the objective function of predictive controller. Inequality constraints of actuators are added to the objective function through a penalty term which increases drastically as it approaches the limitations. To use the controller for wide range of process systems, an initial phase runs before the main controller to determine parameters. This phase moves the system output to operating point and applies PID controller with APRBS reference signal. The gathered data are used to estimate parameters such as pure delay, prediction horizon, control coefficient and identification order. To validate the approaches, the controller has implemented in level, pressure and flow pilot plants and compared with conventional controller which shows faster and smoother tracking results.
منابع مشابه
طراحی کنترل کننده پیش بین سیستم بویلر- توربین
A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...
متن کاملSimulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor
In this research, modeling, simulation, and control of a methanol-to-olefins laboratory fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. Then, the reactor was simulated at steady-state conditions and the effect of different parameters including...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملDecentralized Advanced Model Predictive Controller of Fluidized-Bed for Polymerization Process
The control of fluidized-bed operations processes is still one of the major areas of research due to the complexity of the process and the inherent nonlinearity and varying dynamics involved in its operation. There are varieties of problems in chemical engineering that can be formulated as NonLinear Programming (NLPs). The quality of the developed solution significantly affects the performa...
متن کاملModel Predictive Inferential Control of a Distillation Column
Typical production objectives in distillation process require the delivery of products whose compositions meet certain specifications. The distillation control system, therefore, must hold product compositions as near the set points as possible in faces of upset. In this project, inferential model predictive control, that utilizes an artificial neural network estimator and model predictive cont...
متن کامل